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Previously, the direct use of prior phase information from a

single-wavelength anomalous diffraction (SAD) experiment

with a multivariate likelihood function applied to automated

model building with iterative refinement has been proposed

[Skubák et al. (2004), Acta Cryst. D60, 2196–2201]. In this

approach, the anomalous information from the experimental

data is used in refinement to derive phase information in a

maximum-likelihood formalism and provided a more theor-

etically valid way of incorporating prior phase information

compared with current approaches. In the present work, the

SAD multivariate likelihood function that directly uses prior

phase information is tested against currently used functions on

many different SAD data sets which exhibit a wide range of

resolution limits and anomalous signal. The results clearly

show the importance of the more theoretically valid utilization

of prior phase information: the SAD function extends the

resolution and phase-quality limits needed for successful

automated model building with iterative refinement. Indeed,

the multivariate likelihood function reduces the overfitting in

the refinement procedure and performs consistently better

than the current refinement targets in terms of the quality of

the models obtained and the number of residues built.
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1. Introduction

A common occurrence in protein crystallography is a low

observation-to-parameter ratio in model refinement. In order

to alleviate this problem, all available prior information

should be used, thus effectively increasing the ratio of obser-

vations to unknowns. Prior information about geometry (Engh

& Huber, 1991) has been used as a standard in refinement

programs. Several years ago, a refinement target using prior

phase information was proposed and implemented in a target

function denoted MLHL (Pannu et al., 1998). In this approach,

the phase distribution encoded in the form of Hendrickson–

Lattman coefficients (Hendrickson & Lattman, 1970) is used.

However, the MLHL function has approximations which

might not be completely justified, including the assumption

that the prior phase information is independent of the model.

Furthermore, the MLHL target is strongly dependent on the

accuracy and reliability of the phasing program used to

generate the Hendrickson–Lattman coefficients. As a conse-

quence, the indirect use of prior phase information may lead

to poorer results than not using it at all (Calderone, 2004).

Direct incorporation of experimental phase information

(Skubák et al., 2004) removes these shortcomings, taking into

account the current model and substructure, the measured

data (including its anomalous part), the correlations between

structure factors and errors in the experiment and in the

model within a multivariate likelihood formalism.



Brunger (2005) stated that the use of the MLHL target with

iterative and manual improvement of both the heavy-atom

model and the experimental phase probability distribution

was crucial for the solution of structures with low-resolution

data. Since the multivariate likelihood function incorporates

phase information directly and dynamically, it should be able

to push the resolution limits for automated model building

further in a compact and non-iterative fashion. Full automa-

tion of macromolecular model building at lower resolutions is

an important challenge to high-throughput structure deter-

mination since interactive model building of large structures

can be both time-consuming and challenging. Significant

progress in this field has been achieved at medium to low

resolution in automated model building with MAID (Levitt,

2002), RESOLVE (Terwilliger, 2004) and ARP/wARP (Morris

et al., 2004). However, as Badger (2003) has shown, there is

still room for further improvement, especially at resolutions

reaching 3 Å.

Although a refinement target that uses prior phase infor-

mation directly has been proposed and implemented (Skubák

et al., 2004) with promising results, so far no extensive tests of

the method have been reported. In this work, we compare the

performance of the current refinement targets with the SAD

multivariate likelihood function in automated model building

and iterative refinement on a wide range of real test data sets

with differing resolution limits and quality of initial phase

estimates.

2. Methods

The multivariate SAD function is compared with the current

refinement targets in automated model building with iterative

refinement on a set of 15 different previously solved protein

structures. This random sample of data sets used to test the

SAD function exhibits a wide variety of resolution limits, data

quality, anomalous signal and both number and type of

anomalous scatterers. The statistics for all the data sets are

presented in Table 1.

All tests were performed on a personal computer with a

2.6 GHz Intel Pentium 4 processor running the GNU/Linux

Mandrake 10.1 operating system. We used the automated

model-building program ARP/wARP (v.6.1.1; Perrakis et al.,

1999) employing the model refinement program REFMAC5

(v. 5.2.0005; Murshudov et al., 1997) from the CCP4 package

(v.5.0.2; Collaborative Computational Project, Number 4,

1994). In the tests, three likelihood targets differing in how

they utilize prior phase information are compared: the target

lacking any prior phase information (Murshudov et al., 1997;

Bricogne & Irwin, 1996; Pannu & Read, 1996), denoted below

as the Rice target, the function using the phase information

indirectly and encoded in Hendrickson–Lattman coefficients

(Pannu et al., 1998), denoted as MLHL, and the target incor-

porating the information about phases from a SAD experi-

ment directly (Skubák et al., 2004), denoted as the SAD target.

The Rice and MLHL targets were present in REFMAC5,

while the same version of REFMAC5 was modified to include

the SAD function (Skubák & Pannu, unpublished work).

The sequence information for the protein was supplied to

ARP/wARP and sequence docking was performed for the

second half of the building process, as it improved results in a

few difficult test cases. The selenomethionine residues in the

sequence were replaced by methionines in the input to ARP/

wARP, since v.6.1.1 does not recognize selenomethionine

residues.

For all data sets, we randomly selected 5% of reflections for

the free set (Brünger, 1992). Default settings were used in

Luzzati error-parameter (Luzzati, 1952) estimation: for the

Rice and MLHL functions the working set of reflections was

used and for the SAD function the set of free reflections was

used: these choices yielded the best results for every function

(data not shown).

The REFMAC5 ‘XNON NO’ option (Garib Murshudov,

personal communication) was used in all runs: this option
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Table 1
Data-set statistics.

Substructure

Molecule Type Total Found f 00 (approx.) Resolution Residues
Map correlation
after DM

wARP
cycles

GerE Se 12 12 3.9 2.73 384 0.5127 20
MutS Se 46 45 5.0 3.00 1542 0.6606 20
Bacteriophage T4 Hg 1 1 11.0 2.74 198 0.6566 50
Transhydrogenase Se 16 16 4.0 2.48 364 0.6506 30
AEP transaminase Se 66 66 6.5 2.55 2169 0.7660 20
Cyanase Se 40 39 3.9 2.40 1560 0.7433 30
Ribonuclease Pt 5 5 6.9 2.50 192 0.4287 30
Crustacyanin S 12 12 0.72 2.60 362 0.3704 30
�-Mannosidase Se 4 3 5.4 2.00 351 0.7340 10
Thioesterase I Br 22 20 5.0 1.80 458 0.6984 10
PSCP Br 9 8 5.0 1.80 371 0.4420 10
Lysozyme (360�) S, Cl 12 9 0.56 1.64 129 0.7537 10
Lysozyme (270�) S, Cl 12 8 0.56 1.64 129 0.5924 30
Lysozyme (180�) S, Cl 12 7 0.56 1.64 129 0.4701 30
Ferredoxin Fe 8 8 1.25 0.94 55 0.7441 10
Insulin Zn 2 2 2.23 0.98 102 0.4101 30
Thionein Cu 8 8 3.84 1.64 36 0.8573 20



causes only the diagonal terms of the Fisher matrix (Steiner et

al., 2003) to be used in the minimization. Consistently better

results were achieved with this option for all the tested func-

tions. No resolution cutoffs were used for any data set. The

number of building cycles was different for every test case

according to the rate of model building, but it was the same for

all the targets used to refine the same protein (see Table 1).

The number of cycles was set to the maximum required by the

different targets so that model building was never stopped

while the model was still improving (as judged by the

improvement in map correlation). All other parameters were

used as default in the running of the program for all the tests

unless stated otherwise below.

For all test cases, the steps of heavy-atom detection, phasing

and density modification were performed using the CRANK

(v.0.9; Ness et al., 2004) suite. CRANK uses the direct-methods

program CRUNCH2 (de Graaff et al., 2001) using difference E

values calculated by DREAR (Blessing & Smith, 1999) or the

program SHELXD (Schneider & Sheldrick, 2002) for

substructure detection, BP3 (Pannu & Read, 2004) for

substructure refinement and phasing and DM (Cowtan, 1999)

for density modification. In most of the cases, the process of

substructure detection, refinement and phasing and density

modification was performed automatically using the default

CRANK values. In a few cases, input parameters such as

resolution cutoff for substructure detection, solvent content

for density modification or the number of cycles of CRANK

subprograms were changed in order to obtain better results.

Information about non-crystallographic symmetry was not

used and only the single-wavelength anomalous diffraction

data set was used throughout.

The MLHL function requires the indirect phase informa-

tion in the form of Hendrickson–Lattman (HL) coefficients. In

most of the cases, the coefficients from BP3 provided better

results than HL coefficients from DM, so the MLHL results

reported in all the following tables will refer to the use of HL

coefficients generated by BP3. Those cases where the results

were better using HL coefficients from DM are presented in

the text.

The substructure atomic parameters required by the SAD

function were obtained from BP3. All atoms found were used

as input, including any incorrect ones. In most cases, the

occupancies of incorrect atoms were refined to very small

values by BP3 and thus did not disturb the subsequent

building and refinement by the SAD function. The heavy-

atom coordinates were fixed since they are usually well refined

by BP3 and only isotropic temperature factors and occu-

pancies of the substructure were refined by the SAD function.

3. Results

To compare models built using refinement against the Rice,

MLHL and SAD multivariate likelihood refinement targets,

we report the total number of backbone residues built by

ARP/wARP. Because part of the model built might be traced

incorrectly or misplaced, we also include the number of

‘correctly built’ residues. A residue is regarded as ‘correct’ if

its C� atom is placed within 1 Å of a C� position from the final

model (e.g. Badger, 2003). We also quote the quality of this

‘correct’ part of the model by the root-mean-square (r.m.s.)

error of the C� positions of the ‘correctly’ placed residues. The

number of correct residues and the r.m.s. error of the correct

part of the model are calculated by a compare-protein script

(Ness & Skubák, unpublished work) within the CRANK suite.

The map correlation with the final model is also shown and

was computed using the program SFTOOLS (Bart Hazes,

unpublished program).

The statistics reported in the following tables are the values

from the end of ARP/wARP model-building runs. The map

correlation before the last model-building cycle is reported. In

a few cases, the built models became worse as the building

process continued. This is a consequence of problems in the

refinement performed between the building cycles. For these

cases, we present the number of built residues at the beginning

of the run in the text.

Fig. 1 shows a global summary of the performance of all of

the target functions for the data sets in terms of the number of

residues built. Below, we describe the automated model-

building results for each data set in two sections based on

resolution.

3.1. Test cases with 2.4 Å or lower resolution

3.1.1. GerE. Bacillus subtilis regulatory protein GerE

derivative consists of six monomers with two selenomethio-

nine residues in each monomer (Ducros et al., 2001). The SAD

function with the direct use of prior phase information was

essential in improvement of the initial maps and also in

building a significant part of the model as can be seen in

Fig. 2(a). Both the MLHL and Rice functions failed in auto-

mated building and both targets demonstrated a great deal of

overfitting as shown in Fig. 2(b) by a plot of the R factors as a

function of building cycle for all the functions. When refine-

ment was performed against the SAD target, overfitting was

significantly reduced.

Despite the low-resolution data (2.73 Å) with relatively

poor initial maps and phases (phase error of 62.8� after density
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Figure 1
The number of correctly built residues (solid part) and incorrectly built
residues (cross-hatched part) using the Rice function (in green), the
MLHL function (in blue) and the SAD function (in red). Only the cases
with successfully built models are shown.



modification), a great part of the model was traced by ARP/

wARP and REFMAC5 using the SAD function (Table 2). One

monomer was built to a high degree (83%), docking part of

the side chains correctly. Almost all missing residues of this

monomer were present in the fragments of the other built

monomers. Although almost 8% of residues built were clas-

sified as incorrect, they did not form incorrectly built regions

and their displacement was often just slightly above the 1 Å

correctness criterion.

Interestingly, even better results with the SAD function

were achieved when we did not refine the occupancies of the

Se atoms. Over 250 backbone residues were correctly traced

with an r.m.s. error of 0.46 Å and over 150 side chains were

correctly docked. However, this behaviour was specific to the

GerE case, since the refinement of substructure occupancies

improved the model building in the other test cases.

3.1.2. MutS. The structure of the Escherichia coli DNA-

repair protein MutS was originally determined from 3 Å

resolution MAD diffraction data and a higher resolution

(2.2 Å) data set all of which were from a selenomethionine

crystal (Lamers et al., 2000). Automated substructure detec-

tion, phasing and density modification from the peak 3.0 Å

SAD data set with default parameters yielded a good initial

map for model building (Table 1). For all refinement targets,

around 800 residues were traced in the first building cycle,

over 600 of which were placed correctly. Subsequent building

cycles with the Rice and MLHL functions worsened the

quality of the electron-density map, resulting in only 11 resi-

dues built with the Rice function and 190 with MLHL at the

end of the building process (Table 3). ARP/wARP with the

SAD function was able to improve the initial maps further and

was able to correctly build over 70% of the backbone (almost

1100 residues). Plots of the change in map correlation and R

factor with increasing model-building cycles resemble those

for GerE (Fig. 2), with larger differences between the MLHL

and SAD curves. In contrast to the other test cases, the MLHL

refinement was better with static phase information from DM.

784 residues were traced with this approach, 659 of which were

correct. The quality of the map was slightly improved at the

beginning of the automated model-building process and then

remained unchanged for the rest of process, with the final map

correlation reaching 0.80.

3.1.3. Bacteriophage T4. The structure of the receptor-

binding domain of bacteriophage T4 was originally solved

using the SIRAS method (Thomassen et al., 2003). The

anomalous signal from the single mercury turned out to be of

sufficient quality to solve the structure using the SAD method.

Density modification again played an essential role in the

breakdown of phase ambiguity as it improved the phase error

from 73.4� to 48.1� owing to the very high solvent content.

For this protein, the process of model building was signifi-

cantly slower than in the other test cases. ARP/wARP was only

able to build a small part of the structure without prior phase

information (Table 4), although the overfitting was not as

strong as in the MutS case and the refinement did not cause

worsening of map quality. Very complete models were built

with targets utilizing prior phase information. Building with
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Table 2
The results of GerE model building.

GerE Rice MLHL SAD

Map correlation 0.3808 0.533 0.6876
Residues built 0 31 221
Correct residues 0 13 204
R.m.s. error of model (Å) — 0.533 0.547
Total run time (min) 68.1 78.87 117.3

Table 3
The results of MutS model building.

MutS Rice MLHL SAD

Map correlation 0.5643 0.7074 0.8745
Residues built 11 190 1224
Correct residues 2 139 1092
R.m.s. error of model (Å) 0.759 0.609 0.385
Total run time (min) 327.77 378.33 533.08

Table 4
The results of bacteriophage T4 model building.

Bacteriophage T4 Rice MLHL SAD

Map correlation 0.6564 0.8811 0.8679
Residues built 64 173 197
Correct residues 51 168 194
R.m.s. error of model (Å) 0.548 0.268 0.247
Total run time (min) 337.74 368.03 429.74

Figure 2
The dependence of (a) map correlation and (b) R factor on automated
model-building cycle for all three likelihood functions in the GerE test
case. The green curve shows the results for the Rice function; the blue
curve is for MLHL and the red curve is for the SAD function.



the SAD function was more rapid than for MLHL, but

approximately 35 rebuilding cycles were still required to build

the model. However, at the end of building, 98% of the model

was built correctly with an r.m.s. error of less than 0.25 Å.

3.1.4. Transhydrogenase. The structure of domain III of

human heart transhydrogenase [NADP(H)-binding compo-

nent; White et al., 2000] was determined using an SeMet-

derivative crystal diffracting to 2.48 Å. All 16 Se atoms were

correctly identified and a reasonable map (with a correlation

of 65%) was output by CRANK. The differences between the

functions in terms of the quality of the maps produced are

large, as can be observed in Fig. 3. These differences are

reflected in the number of traced residues and the r.m.s. of

models as stated in Table 5. With the SAD function, over 95%

of the model was built correctly, including correct docking of

all side-chain residues. One of the two monomers in the

asymmetric unit was built almost completely, with only two

outer residues missing of the total 182 residues. Using the Rice

or MLHL functions, no monomer was completely built; at

least 55 residues were missing.

3.1.5. AEP transaminase. The crystal structure of

2-aminoethylphosphonate (AEP) transaminase was originally

determined by a multiwavelength anomalous diffraction

experiment (Chen et al., 2002). The automated process of

substructure determination, phasing and density modification

yielded a very good density map which was successfully traced

by ARP/wARP using all the refinement functions, despite the

moderate resolution of 2.55 Å.

The number of residues built was greater than 2000 and

similar for all functions, but there were significant differences

in the quality of the models built. The differences are reflected

in the map correlations after building and in the r.m.s. statistics

of the model built (Table 6): the correlation coefficient

produced with the SAD function was significantly higher and

the r.m.s. error of the model was lower.

3.1.6. Cyanase. E. coli cyanase was originally solved using

MAD with an SeMet derivative at 2.4 Å and a 1.65 Å reso-

lution native data set (Walsh et al., 2000). In this case, the

performance of automated model building was strongly

dependent on the use of experimental phase information.

With the default ARP/wARP Rice function (i.e. using no

phase restraints) the overall map correlation decreased from

the initial 0.77 to 0.56 after 20 building cycles, probably owing

to high overfitting in refinement. Therefore, the best models

were built during the first building cycles with approximately

800–900 backbone residues reported, �90% of which were

placed correctly. In contrast, both functions using prior phases

build very complete high-quality models with 97% of the

backbone of all ten subunits with more than 90% of the

correct side residues docked. The only significant difference

between the SAD and MLHL functions was in the speed of

building: ARP/wARP with the SAD function built the model

significantly faster than with MLHL (Table 7).

3.1.7. Ribonuclease and crustacyanin. Automated model

building failed for both the Streptomyces aureofaciens ribo-

nuclease (Sevcik et al., 1996) 2.5 Å platinum-derivative data

set and crustacyanin (Gordon et al., 2001) 2.6 Å sulfur SAD

data set regardless of the refinement target used. The map

correlation after phasing and density modification were only

around 0.4 owing to small anomalous signal, although all

substructure atoms were correctly identified.
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Figure 3
Electron-density maps of a small transhydrogenase region at the end of ARP/wARP procedures superimposed on the final deposited model. The maps
(all contoured at 1�) obtained when using (a) Rice, (b) MLHL and (c) SAD targets for refinement are shown.

Table 5
The results of transhydrogenase model building.

Transhydrogenase Rice MLHL SAD

Map correlation 0.6697 0.7686 0.892
Residues built 182 255 348
Correct residues 151 244 347
R.m.s. error of model (Å) 0.523 0.376 0.219
Total run time (min) 178.87 189.05 206.94

Table 6
The results of AEP transaminase model building.

AEP transaminase Rice MLHL SAD

Map correlation 0.8415 0.8982 0.9322
Residues built 2056 2049 2117
Correct residues 2024 2043 2105
R.m.s. error of model (Å) 0.397 0.243 0.213
Total run time (min) 658.88 650.17 719.07



3.2. Test cases with resolution higher than 2.4 Å

3.2.1. b-Mannosidase, thioesterase I, PSCP and lysozyme
(360���). For most of the test data, significant differences existed

between the results of automated model building when

comparing the results of any target function with another.

However, for the cases of �-mannosidase (Boraston et al.,

2003), thioesterase I (Devedjiev et al., 2000), PSCP (Pseudo-

monas serine-carboxyl proteinase; Dauter et al., 2001) and

lysozyme collected over 360� (Weiss, 2001), we found no

significant differences when using ARP/wARP with different

target functions (except using MLHL with HL coefficients

from DM as described below). The model building was always

very rapid, with very complete models containing correct side

chains (more than 90% of the model) obtained in less than ten

building cycles. The results of the automated model building

for all four test cases are summarized in Table 8.

Unexpected results were obtained using the MLHL target

with Hendrickson–Lattman coefficients from DM. Of these

four data sets, only the PSCP model was built with a similar

number and quality of built residues as yielded by the other

three approaches (Table 8), although a larger number of

building cycles were required. The building provided only 191

residues for �-mannosidase, 107 residues for thioesterase and

34 for lysozyme, with significantly poorer r.m.s. errors and map

correlations. The complete models of all these proteins can be

built using DM phases applying blurring factors with low

scales as suggested by Murshudov (Pannu et al., 1998). Blur-

ring factors with scales lower than 0.4 were required to build

the complete thioesterase model; higher blurring scales were

sufficient to build the �-mannosidase and lysozyme models.

However, when applying blurring factors with such a low scale,

it is questionable whether these truly qualify as phase

restraints. Since the models can be built without any prior

phase information, the success of building with very low

blurring scales is expected regardless of the prior phase

distributions used.

3.2.2. Lysozyme (270���). The automated building of lyso-

zyme from data collected over 270� (Weiss, 2001) was signifi-

cantly different than building from the data collected from the

same crystal over the whole sphere. Fewer S atoms were

identified, with a greater r.m.s. error (most likely owing to the

smaller redundancy of the data, leading to a smaller signal-to-

noise ratio). This caused CRANK to produce a map for model

building with a correlation over 15% less than in the case of

360� data, as can be seen in Table 1. The map turned out to be

of insufficient quality to be traced by ARP/wARP at the

beginning of the building process. Thus, building relied on the

improvement of maps in the refinement process. With either of

the current REFMAC5 refinement targets, the improvement

of maps stopped after a certain number of cycles, as shown in

Fig. 4, and was not sufficient to build any residues. In contrast,

rapid improvement was achieved by direct incorporation of

phase information into the refinement target, yielding an

almost complete lysozyme model. It is interesting to observe

that the quality of the model built is outstanding and similar to

that obtained from the 360� data (Tables 8 and 9), although the

initial map and phase error before building were much poorer.

The fact that only the SAD function was able to build the

model using this data is no longer true if a significantly better

map is available before the initial model building. Changing

the input parameters for substructure detection in CRANK

for either CRUNCH2 or SHELXD led to a more complete

sulfur substructure and higher quality input maps. These maps

could then have been traced using all the target functions, as in

the case of the lysozyme 360� data.
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Table 7
The results of cyanase model building.

Cyanase Rice MLHL SAD

Map correlation 0.5592 0.9328 0.9333
Residues built 600 1524 1522
Correct residues 472 1515 1512
R.m.s. error of model (Å) 0.686 0.178 0.181
Total run time (min) 608.05 826.38 727.41

Table 8
The results of model building of �-mannosidase, thioesterase, PSCP and
lysozyme (360�).

Rice MLHL SAD

�-Mannosidase
Map correlation 0.9528 0.9509 0.9546
Residues built 341 333 340
Correct residues 339 333 340
R.m.s. error of model (Å) 0.097 0.091 0.08
Total run time (min) 73.8 76.72 78.47

Thioesterase I
Map correlation 0.8902 0.8948 0.8986
Residues built 428 440 445
Correct residues 427 439 444
R.m.s. error of model (Å) 0.157 0.153 0.157
Total run time (min) 58.78 61.21 65.45

PSCP
Map correlation 0.6042 0.6106 0.6066
Residues built 349 352 356
Correct residues 349 352 355
R.m.s. error of model (Å) 0.355 0.351 0.351
Total run time (min) 84.13 85.71 94.84

Lysozyme (360�)
Map correlation 0.9576 0.9533 0.9527
Residues built 124 121 123
Correct residues 124 121 123
R.m.s. error of model (Å) 0.077 0.104 0.081
Total run time (min) 31.39 32.21 35.52

Figure 4
The improvement of map correlation during the building process of
lysozyme collected over 270�. The green curve stands for use of no prior
phase information, the blue curve is for its indirect use and the red curve
shows its direct use by SAD function.



3.2.3. Lysozyme (180���). The lower redundancy of lysozyme

data collected over 180� (Weiss, 2001) caused a lower success

rate of substructure determination. In this run, seven atoms

were correctly identified, providing a map with 0.47 correla-

tion to the final map. Although there were clear differences in

the map improvement using the the automated building with

different refinement targets, the maps were never of sufficient

quality to automatically trace the model. As in the case of the

lysozyme 270� data set, changing the input parameters in

CRANK for substructure detection in either CRUNCH2 or

SHELXD led to a more complete sulfur substructure and

higher quality input maps that could be traced.

3.2.4. Ferredoxin. The crystal structure of ferredoxin from

Clostridium acidurici has been solved using data extending to

0.94 Å (Dauter et al., 1997). Owing to a very strong anomalous

signal from the Fe atoms from two [4Fe–4S] clusters, the map

correlation after BP3 was already very high (0.726). As ARP/

wARP reported an error building with the default building

algorithm, we used the other available algorithm for model

building. Despite good maps and high resolution, all back-

bones built are less than 90% complete. ARP/wARP using the

SAD functions can build several more residues than with

MLHL, which is again several residues better than the Rice

function (Table 10). The quality of all the models built is

excellent; all C� atoms are correctly placed with an r.m.s.

deviation of �0.05 Å.

3.2.5. Insulin. Although the insulin data set was collected to

1.0 Å, with less than 75% Friedel pair completeness, it is

possible to phase this protein by the SAD method using the

anomalous signal of the two Zn atoms (Dauter et al., 2002).

However, in this single test case we were not able to phase the

structure using only the automated procedures of CRANK.

The complication was caused by the fact that both atoms lie on

special positions: the threefold symmetric axis of the R3

(hexagonal setting) space group. Although in CRANK runs

CRUNCH2 was able to find the approximate positions of both

Zn atoms, they were displaced from the symmetry axis and

their position could not be corrected in heavy-atom refine-

ment. Thus, phasing under these conditions was unsuccessful,

yielding a phase error of more than 80�. Since the atoms were

close to special positions, we edited the scripts produced by

CRANK and manually shifted the atoms to the exact special

position and kept them fixed on the threefold axis, only

allowing them to move along the axis in heavy-atom refine-

ment, as is consistent with the location of the special position.

This treatment provided phases with a phase error of 74.0�.

research papers

1632 Skubák et al. � Extending resolution and phase-quality limits Acta Cryst. (2005). D61, 1626–1635

Table 9
The results of lysozyme (270�) model building.

Lysozyme (270�) Rice MLHL SAD

Map correlation 0.633 0.7062 0.9562
Residues built 0 0 120
Correct residues 0 0 120
R.m.s. error of model (Å) — — 0.068
Total run time (min) 39.2 40.53 92.92

Table 10
The results of ferredoxin model building.

Ferredoxin Rice MLHL SAD

Map correlation 0.8429 0.8799 0.9129
Residues built 40 44 48
Correct residues 40 44 48
R.m.s. error of model (Å) 0.05 0.045 0.045
Total run time (min) 20.99 23.23 25.18

Figure 5
Models of thionein as built by ARP/wARP using the (a) Rice and (b) SAD functions, shown in white, superimposed on the final deposited model in
orange. No model was built using the MLHL function.



Subsequently, DM was run from a script produced by CRANK,

improving the phases slightly to 72.0�.

In spite of poor initial phases, ARP/wARP could trace

almost the complete model by using prior phase information

in the refinement. Using the Rice function with a default

working set of reflections for Luzzati error-parameter refine-

ment, the maps were greatly improved, having a map corre-

lation of approximately 0.71 (Table 11). However, further

refinement did not yield further improvement and no residues

could be traced from the density map obtained. An interesting

improvement was achieved using the Rice function by using

the free set of reflections for Luzzati parameter refinement

only. Using this approach, the map improvement continued

for significantly longer, allowing over 60 residues to be built.

Usually, the correct tracing of additional residues increases the

map quality and allows tracing of more residues in the next

building cycles. However, this trend was not observed in this

case, as the map correlation was not improved after a great

number of residues was traced.

Just ten building cycles were required to improve the phases

by more than 40� and to build the majority of the model with

the MLHL and SAD functions. The quality of models was

further improved by correct docking of all residues in the

second part of the building process. However, no model could

be built using the MLHL function with HL coefficients from

density modification. The refinement process with this

approach was the worst of all and gave no significant increase

in map correlation, which was 0.428 at the end of refinement.

Although the refinement was improved by applying blurring

factors, the improvement was not sufficient to build the model.

The best results achieved using DM phases with any combi-

nation of blurring scale and blurring B factor were similar to

those produced without any use of prior phase information.

3.2.6. Thionein. The truncated copper thionein from yeast

(Calderone et al., 2004) consists of eight Cu atoms surrounded

by 36 protein residues (Fig. 5), with the anomalous signal

being approximately 15% of the total scattering. The very high

anomalous signal and small number of residues are similar to

the ferredoxin test case and the results obtained are also very

similar: CRANK was able to find all heavy atoms and

produced an outstanding map with a correlation of 0.857 with

the final map which was surprisingly difficult to trace. Using

the Rice function for refinement, 21 residues were traced at

the end of the building. However, the number of traced resi-

dues fluctuated rapidly between 0 and 25 during building

(Fig. 6), which is very unusual and was not observed in any of

the other test cases. No residues were traced if we used ARP/

wARP with MLHL for refinement, although the map corre-

lation in the first cycles was comparable with that of the Rice

function and did not significantly decrease during building.

The reason for this behaviour is not understood, but the

results are in accordance with those obtained in the original

structure determination. ARP/wARP with the SAD function

built a very good model of low r.m.s. error consisting of 34

residues (Table 12), all of which were correctly docked.

4. Discussion and conclusions

From the test cases, the SAD refinement target is shown to

extend the limits of phase quality and resolution needed

compared with currently used functions. In difficult cases, such

as GerE, 270� lysozyme, transhydrogenase, thionein or MutS,

the direct use of this information in the more theoretically

justified SAD function is shown to generate more complete

models of higher quality. The majority of the 3 Å MutS model

(Table 3) or �2.75 Å bacteriophage T4 and GerE models

(Tables 2 and 4) were successfully built by ARP/wARP using

the SAD function. This is beyond the currently recommended

ARP/wARP resolution limit of 2.6 Å (Morris et al., 2004).

However, if the resolution and the phase quality of the data

are lower, automated building is likely to fail. The current

limits of phase quality and resolution for successful model

building using ARP/wARP with the SAD function can be

estimated from Fig. 7. Besides extending the phase quality and

resolution limits, the figure also demonstrates that the use of

the SAD function can be surprisingly beneficial in some cases

of high map correlation and resolution (the upper left part of

the plots) that are not traced completely using current

methods.
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Figure 6
The number of built residues in the thionein test case during the ARP/
wARP run for the Rice function (green), MLHL (blue) and SAD (red)
functions.

Table 11
The results of insulin model building.

Insulin Rice MLHL SAD

Map correlation 0.7119 0.8891 0.903
Residues built 0 93 95
Correct residues 0 93 94
R.m.s. error of model (Å) — 0.123 0.117
Total run time (min) 111.9 209.99 212.91

Table 12
The results of thionein model building.

Thionein Rice MLHL SAD

Map correlation 0.7156 0.7827 0.8736
Residues built 21 0 34
Correct residues 21 0 34
R.m.s. error of model (Å) 0.143 — 0.071
Total run time (min) 39.81 37.51 48.35



Table 13 summarizes the results on the basis of the reso-

lution of the data set.

The performance of the indirect use of prior phase infor-

mation turned out to be strongly dependent on the source of

the static phase distributions used. Taking the phase distri-

butions from a phasing program usually provided better

models than those obtained with the phase distributions

obtained from density modification. However, this behaviour

may be dependent on the programs used for phasing (BP3)

and density modification (DM), as well as on the input para-

meters to these programs. In some cases, refinement with the

phases from DM was improved when the blurring factors with

low scales or high B factors were applied. However, in the

insulin case, when the proper prior phase information was

required to build the complete model, the blurring of phase

distributions from density modification was not sufficient to

build the model, although it could be built using the phase

distributions from Hendrickson–Lattman coefficients from

BP3. These results show that it is crucial that the phase

distributions used by refinement with the MLHL target are as

precise as possible and not biased. Therefore, the performance

of the indirect use of prior phase information without the

refinement of substructure parameters and/or Luzzati error

parameters may be less than optimal in some cases. All these
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Figure 7
The percentage of model built as a function of map correlation before building and the resolution of data for all tested data sets. The results obtained
using (a) Rice, (b) MLHL and (c) SAD target for refinement are shown using ‘traffic light colours’: green represents an almost completely built model
(80–100% of backbone residues built), yellow and red represent partially built models (50–80 and 20–50%, respectively) and black shows unsuccessful
model building (0–20%).

Table 13
The mean value of the ratio of correctly built to the total number of
residues in the final model from the 14 test cases that were successfully
built as a function of resolution.

Correct part of model Rice MLHL SAD

Resolution better than 2.4 Å (%) 63.9 68.8 93.9
Resolution 2.4 Å or lower (%) 27.2 50.7 73.1

problems are avoided if the SAD function is used, which

directly reconstructs the phase information from the available

information and allows for the refinement of substructure and

error parameters.

The use of the SAD function did not significantly slow down

the building-program runtime, which was approximately 10%

longer than without any prior phase information, as judged

from the cases in x3.2.1. The greater differences between

building runtime with different functions in some other cases

are caused by a different number of residues built and treated

when different functions are used.

The SAD function is certainly not limited for use with any

particular refinement-performing program, but can be incor-

porated straightforwardly for use with other autobuilding

programs employing refinement, such as RESOLVE or recent

developments using conditional dynamics (Scheres & Gros,

2004).

Most of the above-mentioned structures were solved auto-

matically from SAD data, requiring only basic information

about the data and protein as user input, even though MAD or

SIRAS phasing was originally used to determine the structure.

However, the proper use of the all the available information,

whether it be from a SIRAS or MAD experiment, could lead

to better building statistics than with just SAD data alone.

Thus, we are currently implementing a multivariate likelihood

function that directly incorporates prior phase information

from SIRAS and/or MAD experiments.
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